Real-time conductivity analysis through single-molecule electrical junctions.
نویسندگان
چکیده
Conductance through single-molecule junctions, consisting of nanoparticle/molecule/nanoparticle units between nanoscale planar electrodes, was monitored in real time during several process sequences, including dielectrophoretic directed self-assembly and post-assembly modification. Assembly faults are directly detected in real time when non-ideal assembly conditions result in molecular junction failure and nanoparticle fusion in the junction. The real-time conductivity measured through the junction was sensitive to ambient conditions, and changes persisted over several days of exposure. Atomic layer deposition of Al(2)O(3) was used to encapsulate and isolate the molecular junctions, and the effect of the deposition process sequence on current through the junction was evaluated in real time. Results indicate that the current measured during atomic layer deposition is sensitive to the chemical oxidation and reduction reactions proceeding in the 1-2 nm confined region between assembled nanoparticles.
منابع مشابه
Electrical conductance of molecular junctions by a robust statistical analysis.
We propose an objective and robust method to extract the electrical conductance of single molecules connected to metal electrodes from a set of measured conductance data. Our method roots in the physics of tunneling and is tested on octanedithiol using mechanically controllable break junctions. The single molecule conductance values can be deduced without the need for data selection.
متن کاملA Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions
We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromig...
متن کاملDirect single-molecule dynamic detection of chemical reactions
Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the s...
متن کاملExperimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions.
We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the...
متن کاملApplications of Electrical Impedance Tomography in Neurology
Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 18 42 شماره
صفحات -
تاریخ انتشار 2007